Atomically ordered solute segregation behaviour in an oxide grain boundary

نویسندگان

  • Bin Feng
  • Tatsuya Yokoi
  • Akihito Kumamoto
  • Masato Yoshiya
  • Yuichi Ikuhara
  • Naoya Shibata
چکیده

Grain boundary segregation is a critical issue in materials science because it determines the properties of individual grain boundaries and thus governs the macroscopic properties of materials. Recent progress in electron microscopy has greatly improved our understanding of grain boundary segregation phenomena down to atomistic dimensions, but solute segregation is still extremely challenging to experimentally identify at the atomic scale. Here, we report direct observations of atomic-scale yttrium solute segregation behaviours in an yttria-stabilized-zirconia grain boundary using atomic-resolution energy-dispersive X-ray spectroscopy analysis. We found that yttrium solute atoms preferentially segregate to specific atomic sites at the core of the grain boundary, forming a unique chemically-ordered structure across the grain boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of grain boundary character on segregation-induced structural transitions

Segregation-induced structural transitions in metallic grain boundaries are studied with hybrid atomistic Monte Carlo/molecular dynamics simulations using Cu-Zr as a model system, with a specific emphasis on understanding the effect of grain boundary character. With increasing global composition, the six grain boundary types chosen for this paper first form ordered complexions, with the local s...

متن کامل

Atomic-Resolution STEM-EDS Mapping of Grain Boundary Solute Segregation in Yttria-Stabilized Zirconia - RETRACTION.

Yttria-stabilized zirconia (YSZ) is one of the primary choices for the electrolyte material in solid oxide fuel cells (SOFC), due to its excellent ionic conductivity at high temperatures. Nevertheless, such performance is usually limited by the ionic conductivity at grain boundaries, which is at least two orders of magnitude lower than that of bulk [1]. As a result, many studies have been perfo...

متن کامل

Atomic-resolution STEM-EDS mapping of grain boundary solute segregation in yttria-stabilized zirconia

Yttria-stabilized zirconia (YSZ) is one of the primary choices for the electrolyte material in solid oxide fuel cells (SOFC), due to its excellent ionic conductivity at high temperatures. Nevertheless, such performance is usually limited by the ionic conductivity at grain boundaries, which is at least two orders of magnitude lower than that of bulk [1]. As a result, many studies have been perfo...

متن کامل

Direct Visualization of the Grain Boundary Solute Segregation in Oxide Material at Atomic Resolution Using STEM-EDS

Grain boundaries usually govern the macroscopic properties of polycrystalline materials in practical use. Grain boundary segregation is a fundamental yet critical issue in this field since it affects the local structure and chemistry. Although the advanced aberration-corrected scanning transmission electron microscopy (STEM) has provided deep insights into such complex phenomenon even down to t...

متن کامل

Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy.

The properties of materials change, sometimes catastrophically, as alloying elements and impurities accumulate preferentially at grain boundaries. Studies of bicrystals show that regular atomic patterns often arise as a result of this solute segregation at high-symmetry boundaries, but it is not known whether superstructures exist at general grain boundaries in polycrystals. In bismuth-doped po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016